

Superpowered game development.

Language Syntax
version 3.0.5481 beta Proposed Syntax

Live/current version at
skookumscript.com/docs/v3.0/lang/syntax/

November 15, 2017

 Better coding through mad science.

Copyright © 2001-2017 Agog Labs Inc.
All Rights Reserved

http://skookumscript.com/docs/v3.0/lang/syntax/

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 2 -

Combined syntactical and lexical rules for SkookumScript in modified Extended Backus-Naur Form (EBNF).

Production rules in italics. Terminals coloured and in bold and literal strings ‘quoted’. Optional groups: [].
Repeating groups of zero or more: { }. Repeating groups of n or more: { }n+. Mandatory groups: (). Alternatives
(exclusive or): |. Disjunction (inclusive or): V.

Highlight colouring key: in progress, planned, under consideration.

Expressions:
expression = literal | variable-primitive | identifier | invocation | type-primitive | flow-control

Literals:
literal = boolean-literal | integer-literal | real-literal | string-literal | symbol-literal

| char-literal | list-literal | closure | range-literal | closure-routine | map-literal
| enumerator | flagset-literal

boolean-literal = ‘true’ | ‘false’
integer-literal1 = [‘-’] digits-lead [‘r’ big-digit {[number-separator] big-digit}]
real-literal2 = [‘-’] digits-lead V (‘.’ digits-tail) [real-exponent]
real-exponent = ‘E’ | ‘e’ [‘-’] digits-lead
digits-lead = ‘0’ | (non-zero-digit {[number-separator] digit})
digits-tail = digit {[number-separator] digit})
number-separator3 = ‘_’
string-literal = escaped-string | raw-string [ws ‘+’ ws string-literal]
escaped-string4 = ‘"’ {character | (‘\’ [bracketed-args] code-block)} ‘"’
raw-string5 = ‘R’ [‘-’ [‘-’]] ‘"’ {printable}0-16 ‘(’ {printable} ‘)’ {printable}0-16 ‘"’
symbol-literal = ‘'’ {character}0-255 ‘'’
char-literal6 = ‘`’ character
list-literal7 = [(list-class constructor-name invocation-args) | class-desc]

‘{’ ws [expression {ws [‘,’ ws] expression} ws] ‘}’
closure8 = (‘^’ [‘^’] [‘_’ ws] [expression ws]) V (parameters ws) code-block

1 ‘r’ indicates digits-lead is (r)adix/base from 1 to 36 – default 10 (decimal) if omitted. Ex: 2r binary & 16r hex. Valid big-digit(s)

vary by the radix used. See math-operator footnote on how to differentiate subtract from negative integer-literal.
2 Can use just digits-lead if Real type can be inferred from context otherwise the digits-tail fractional or real-exponent part is

needed. See math-operator footnote on how to differentiate subtract from negative real-literal.
3 Visually separates parts of the number and ignored by the compiler. [Consider adding ‘'’ since it will be used by C++.]
4 Escaped code-block indicates use of string interpolation with resulting object having String() conversion method called on it.

If optional bracket-args present it is used as argument(s) to String() call.
5 Raw string using syntax similar to C++11. Optional ‘-’ indicates initial & ending whitespace removed. Optional ‘--’ removes

initial and ending whitespace and indentation of first line from all lines. Optional character sequence prior to ‘(’ used to make
unique delimiter pair that must be matched with the closing character sequence following ‘)’.

6 [Consider removing character literal and just using string literal esp. since UTF-8 character can be several combined glyphs. Also
accent grave/backtick/backquote ‘`’ is bad choice since it is commonly used in Markdown, etc. to demark sections of code.]

7 Item type determined via optional list-class constructor or specified class (or class-desc in the future). If neither supplied, then
item type inferred using initial items, if no items then desired type used and if desired type not known then Object used.

8 Optional ‘^’, parameters or both must be provided (unless used in closure-tail-args where both optional). Optional expression
(may not be code-block, closure or routine-identifier) captured and used as receiver/this for code-block – if omitted this
inferred. Second optional ‘^’ indicates scope of surrounding context used (i.e. refers to surrounding invoked object directly –
which may go out of scope before this closure) rather than making a reference copy of any captured variables. Optional ‘_’
indicates it is durational (like coroutine) – if not present durational/immediate inferred via code-block. Parameter types, return
type, scope, whether surrounding this or temporary/parameter variables are used and captured may all be inferred if omitted.

http://en.wikipedia.org/wiki/Grave_accent#Use_in_programming

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 3 -

range-literal1 = [expression] ‘..’ [[‘.’] expression] | (‘#’ expression)
closure-routine2 = ‘^’ routine-identifier
map-literal3 = [(map-class constructor-name invocation-args) | (class-desc ‘:’ ws [class-desc ws])]

‘{’ ws (key-value {ws [‘,’ ws] key-value}) | ‘:’ ws ‘}’
key-value = expression ws binding
enumerator4 = (enum-class ‘.’) | ‘#’ instance-name
flagset-literal = (flagset-class ‘.’) | ‘##’ (flag-name | ‘all’ | ‘none’)

Variable Primitives:
variable-primitive = create-temporary | bind
create-temporary = define-temporary [ws binding]
define-temporary = ‘!’ ws variable-name
bind5 = variable-identifier ws binding
binding6 = ‘:’ ws expression

Identifiers:
identifier7 = variable-identifier | reserved-identifier | class-identifier | object-id

| routine-identifier
variable-identifier8 = variable-name | ([expression ws ‘.’ ws] data-name)
variable-name = name-predicate
data-name9 = ‘@’ | ‘@@’ variable-name
reserved-identifier = ‘nil’ | ‘this’ | ‘this_class’ | ‘this_code’ | ‘this_mind’
class-identifier = class-name | enum-class | flagset-class
object-id10 = [class-name] ‘@’ [‘?’ | ‘#’] symbol-literal
invoke-name = method-name | coroutine-name
method-name11 = name-predicate | constructor-name | destructor-name | class-name | binary-operator

| postfix-operator
name-predicate12 = instance-name [‘?’]
constructor-name = ‘!’ [instance-name]
destructor-name13 = ‘!!’
coroutine-name = ‘_’ instance-name
instance-name = lowercase {alphanumeric}
class-name = uppercase {alphanumeric}
routine-identifier = ‘@’ ([expression] ‘.’) | scope invoke-name

1 [first]..[[.]last]|(#count) Range from initial inclusive expression value (0/default? if omitted) to second exclusive

expression value (-1/Type.max? if omitted, inclusive if optional third ‘.’ used). If ‘#’ used then until first expression + second
expression. If neither expression is specified and the desired type is not known then Integer type is inferred.

2 Syntactical sugar/optimization of closure getting info such as interface from receiver object and single method/coroutine.
3 Key-value types determined via optional map-class constructor or specified key-value class-desc types. If neither supplied, then

key-value types inferred using initial key-value pairs, if no pairs then desired type used and if desired type not known then
Object used for both key and value types.

4 If desired enumeration class type can be inferred (like when passed as an argument) then optional enum-class may be omitted.
5 [Consider: Make bind valid only in a code-block so that it is not confused in key-value for map-literal.] Compiler gives warning if

bind used in code-block of a closure since it will be binding to captured variable not original variable in surrounding context. May
not be used as an argument.

6 [Stylisticly prefer no ws prior to ‘:’ – though not enforcing it via compiler.]
7 Scoping not necessary – instance names may not be overridden and classes and implicit identifiers effectively have global scope.
8 Optional expression can be used to access data member from an object – if omitted, this is inferred.
9 ‘@’ indicates instance data member and ‘@@’ indicates class instance data member.
10 If class-name absent, Actor inferred or desired type if known. If optional ‘?’ present and object not found at runtime then

result is nil else assertion error occurs. Optional ‘#’ indicates no lookup – just return name identifier validated by class type.
11 A method using class-name allows explicit conversion similar to class-conversion except that the method is always called.

[Consider: could also be used as a mechanism for custom literals – ex: ‘”identifier”.CustomType’ or ‘42.GameId’.]
12 Optional ‘?’ used as convention to indicate predicate variable or method of return type Boolean (true or false).
13 Destructor calls are only valid in the scope of another destructor’s code block. [Ensure compiler check.]

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 4 -

Invocations:
invocation = invoke-call | invoke-cascade | apply-operator | invoke-operator | index-operator

| slice-operator | instantiation
invoke-call1 = ([expression ws ‘.’ ws] invoke-selector) | operator-call
invoke-cascade = expression ws ‘.’ ws ‘[’ {ws invoke-selector | operator-selector}2+ ws ‘]’
apply-operator2 = expression ws ‘%’ | ‘%>’ | ‘%,’ | ‘%<’ | ‘%.’ invoke-selector
invoke-operator3 = expression bracketed-args
index-operator4 = expression ‘{’ ws expression ws ‘}’ [ws binding]
slice-operator5 = expression ‘{’ ws range-literal [wsr expression] ws ‘}’
instantiation6 = [class-instance] | expression ‘!’ [instance-name] invocation-args
invoke-selector = [scope] invoke-name invocation-args
scope = class-unary ‘@’
operator-call7 = (prefix-operator ws expression) | (expression ws operator-selector)
operator-selector = postfix-operator | (binary-operator ws expression)
prefix-operator8 = ‘not’ | ‘-’
binary-operator = math-operator | compare-op | logical-operator | ‘:=’
math-operator9 = ‘+’ | ‘+=’ | ‘-’ | ‘-=’ | ‘*’ | ‘*=’ | ‘/’ | ‘/=’
compare-op = ‘=’ | ‘~=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’
logical-operator10 = ‘and’ | ‘or’ | ‘xor’ | ‘nand’ | ‘nor’ | ‘nxor’
postfix-operator = ‘++’ | ‘--’
invocation-args11 = [bracketed-args] | closure-tail-args
bracketed-args = ‘(’ ws [send-args ws] [‘;’ ws return-args ws] ‘)’
closure-tail-args12 = ws send-args ws closure [ws ‘;’ ws return-args]
send-args = [argument] {ws [‘,’ ws] [argument]}
return-args = [return-arg] {ws [‘,’ ws] [return-arg]}
argument = [named-spec ws] expression
return-arg13 = [named-spec ws] variable-identifier | define-temporary
named-spec14 = variable-name ws ‘:’

1 If an invoke-call's optional expression (the receiver) is omitted, ‘this.’ is implicitly inferred. [Consider whitespace.]
2 If List, each item (or none if empty) sent call – coroutines called using % – sync, %> – race, %, – rush, %< – branch, %.

– span respectively and returns itself (the list). If non-list it executes like a normal invoke call – i.e. ‘%’ is synonymous to ‘.’
except that if nil the call is ignored, then the normal result or nil respectively is returned.

3 Akin to expr.invoke(…) or expr._invoke(…) depending if expression immediate or durational – *and* if enough context is
available the arguments are compile-time type-checked plus adding any default arguments.

4 Gets item (or sets item if binding present) at specified index object. Syntactic sugar for at() or at_set().
5 Returns Integer sub-range: {[first]..[[.]last]|(#count)[step]}. Where: last and first may be negative with -1

last item, -2 penultimate item, etc.; step may be negative indicating sub-range in reverse order.
6 If class-instance can be inferred then it may be omitted. expression used rather than class-instance provides lots of syntactic

sugar: expr!ctor() is alias for ExprClass!ctor(expr) – ex: num!copy equals Integer!copy(num); brackets are
optional for invocation-args if it can have just the first argument; a constructor-name of ! is an alias for !copy – ex: num!
equals Integer!copy(num); and if expr!ident does not match a constructor it will try ExprClass!copy(expr).ident –
ex: str!uppercase equals String!copy(str).uppercase.

7 Every operator has a named equivalent. For example := and assign(). Operators do *not* have special order of precedence –
any order other than left to right must be indicated by using code block brackets ([and]).

8 See math-operator footnote about subtract on how to differentiate from a negation ‘-’ prefix operator.
9 In order to be recognized as single subtract ‘-’ expression and not an expression followed by a second expression starting with a

minus sign, the minus symbol ‘-’ must either have whitespace following it or no whitespace on either side.
10 Like other identifiers – whitespace is required when next to other identifier characters.
11 bracketed-args may be omitted if the invocation can have zero arguments
12 Routines with last send parameter as mandatory closure may omit brackets ‘()’ and closure arguments may be simple code-

block (omitting ‘^’ and parameters and inferring from parameter). Default arguments indicated via comma ‘,’ separators.
13 If a temporary is defined in the return-arg, it has scope for the entire surrounding code block.
14 Used at end of argument list and only followed by other named arguments. Use compatible List object for group argument.

Named arguments evaluated in parameter index order regardless of call order since defaults may reference earlier parameters.

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 5 -

Type Primitives:
type-primitive = class-cast | class-conversion | nil-coalesce | list-expansion
class-cast1 = expression ws ‘<>’ [class-desc]
class-conversion2 = expression ws ‘>>’ [class-name]
nil-coalesce3 = expression ws ‘??’ ws expression
list-expansion = ‘%’ expression

Flow Control:
flow-control = code-block | conditional | case | when | unless | | loop | loop-exit | loop-skip random |

concurrent | class-cast | class-conversion | query-cast | proviso | return | defer
code-block = ‘[’ ws [expression {wsr expression} ws] ‘]’
conditional = ‘if’ {ws expression ws code-block}1+ [ws else-block]
case = ‘case’ ws expression {ws test-expr ws code-block}1+ [ws else-block]
else-block = ‘else’ ws code-block
test-expr = case-operand {ws [‘,’ ws] case-operand}1+
case-operand = expression | range-literal
when = expression ws ‘when’ ws expression
unless = expression ws ‘unless’ ws expression
loop4 = ‘loop’ [ws instance-name] ws code-block
loop-exit5 = ‘exit’ [ws instance-name]
loop-skip6 = ‘skip’ [ws instance-name]
random7 = ‘random’ [‘.’ ‘unique’ | ‘mix’ | ‘remix’] [‘(’ ws expression ws ‘)’]

any-tail | weighted-tail
any-tail8 = ws ‘[’ ws {expression ws }2+ ‘]’
weighted-tail9 = {ws expression ws code-block}2+
concurrent = sync | race | rush | branch | change
sync10 = ‘sync’ ws code-block
race11 = ‘race’ ws code-block
rush12 = ‘rush’ ws code-block
branch13 = ‘branch’ ws expression
change14 = ‘change’ ws expression ws expression
return1 = ‘return’ ws expression

1 Compiler *hint* that expression evaluates to specified class – otherwise error. class-desc optional if desired type can be inferred.

If expression is variable-identifier then parser updates type context. [Debug: runtime ensures class specified is received.
Release: no code generated.]

2 Explicit conversion to specified class. class-name optional if desired type inferable. Ex: 42>>String calls convert method
Integer@String() i.e. 42.String() - whereas “hello”>>String generates no extra code and is equivalent to “hello”.

3 expr1??expr2 is essentially equivalent to if expr1.nil? [expr2] else [expr1<>TypeNoneRemoved].
4 The optional instance-name names the loop for specific reference by a loop-exit which is useful for nested loops.
5 A loop-exit is valid only in the code block scope of the loop that it references.
6 Restarts/continues loop by jumping to loop start – valid only in the code block scope of the loop that it references.
7 Only chosen path is evaluated. Optional modifier after ‘.’ has meanings: ‘unique’ – the previous flow path is not repeated;

‘mix’ – the paths are randomized once initially and iterated through in sequence repeating; ‘remix’ – similar to ‘mix’ but paths
are randomized after each full pass and the first new path is guaranteed not to be the same as the last path in the previous
sequence. Optional expression in brackets ‘()’ is Random object to use and if absent the default random generator is used.

8 Any expression is evaluated at random with a uniform distribution taking any modifier into consideration.
9 The expression represents a Real or Integer value for the weighted probability (value / sum of values) for that flow path. The

sum of values need not add up to 1, 100, or any other specific value. A value of <=0 omits that path in that particular evaluation.
10 2+ durational expressions run concurrently and next expression executed when *all* expressions returned (result nil, return args

bound in order of expression completion).
11 2+ durational expressions run concurrently and next expression executed when *fastest* expression returns (result nil, return

args of fastest expression bound) and other expressions are *aborted*.
12 Like race except: return args bound in expression completion order and other expressions continue until *completed*. code-block

is essentially a closure with captured temporary variables to ensure temporal scope safety.
13 Durational expression run concurrently with surrounding context and the next expression executed immediately (result
InvokedCoroutine). expression is essentially a closure with captured temporary variables to ensure temporal scope safety.

14 Durational expressions in the second expression are updated by the mind object specified by the first expression.

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 6 -

defer2 = ‘defer’ ws expression
query-cast3 = expression ws ‘<?>’ {ws class-desc [ws code-block]}1+ [ws else-block]
proviso4 = ‘\\proviso’ wsr proviso-test ws code-block
proviso-test5 = instance-name | (‘[’ proviso-test ‘]’) | operator-call

File Names and Bodies:
method-filename6 = method-name ‘()’ [‘C’] ‘.sk’
method-file7 = ws {annotation wsr} parameters [ws code-block] ws

coroutine-filename = coroutine-name ‘()’ [‘C’] ‘.sk’
coroutine-file8 = ws {annotation wsr} parameter-list [ws code-block] ws

data-filename9 = ‘!Data’ [‘C’] ‘.sk’
data-file = ws [data-definition {wsr data-definition} ws]
data-definition10 = {annotation wsr} [class-desc wsr] ‘!’ [data-name [ws binding]]

annotation11 = ‘&’ instance-name

object-id-filename12 = class-name [‘-’ {printable}] ‘.sk’ ‘-’ | ‘~’ ‘ids’
object-id-file13 = {ws symbol-literal | raw-object-id} ws
raw-object-id14 = {printable}1-255 end-of-line

flagset-file = ws {flagset-definition ws}
flagset-definition = flagset-name ws [‘:’ ws flagset-class ws]

‘[’ ws [flag-definition {wsr flag-definition} ws] ‘]’
flag-definition15 = flag-name [ws ‘:’ ws flag-operand]
flag-name = instance-name
flag-operand16 = digits | flag-name | flag-op | flag-group
flag-group17 = ‘[’ ws flag-op ws ‘]’
flag-op = flag-operand ws flag-operator ws flag-operand
flag-operator = logical-operator | ‘-’

1 Like race except: return args bound in expression completion order and other expressions continue until *completed*. code-block

is essentially a closure with captured temporary variables to ensure temporal scope safety.
2 Registers expression to be run at end of scope. Useful with multiple exit points created with exit or return.
3 if expression is a variable-identifier, its type is modified in any matching clause block. If a clause block is omitted, the result of

expression is cast to the matching type and given as a result.
4 Conditional code that will be compiled only if proviso-test evaluates to true. [Alternatively, this could be structured like a

conditional expression with 1+ test clauses and an optional “else” clause.]
5 instance-name refers to set of predefined proviso labels – example debug, extra_check, etc. [It could be any valid Boolean

expression – with limits based on availability of code at compile time.] operator-call uses proviso-test rather than expression.
6 If optional ‘?’ is used in query/predicate method name, use ‘-Q’ as a substitute since question mark not valid in filename.
7 Only immediate calls are permissible in the code block. If code-block is absent, it is defined in C++.
8 If code-block is absent, it is defined in C++.
9 A file name appended with ‘C’ indicates that the file describes class members rather than instance members. [Combine data

files into one – add a keyword to separate instance and class and change name to “Class”.]
10 class-desc is compiler hint for expected type of member variable. If class omitted, Object inferred or Boolean if data-name ends

with ‘?’. If data-name ends with ‘?’ and class-desc is specified it must be Boolean or invoke-class with Boolean result type. The
data-name part is optional if a named enum-definition is being defined. Optional binding part is default initialization and its result class
can be used to infer member class. If default binding omitted, member must be bound to appropriate object before exiting constructor.

11 The context / file where an annotation is placed limits which values are valid.
12 Starts with the object id class name then optional source/origin tag (assuming a valid file title) – for example: Trigger-

WorldEditor, Trigger-JoeDeveloper, Trigger-Extra, Trigger-Working, etc. A dash ‘-’ in the file extension indicates an id file that
is a compiler dependency and a tilde ‘~’ in the file extension indicates that is not a compiler dependency

13 Note: if symbol-literal used for id then leading whitespace, escape characters and empty symbol ('') can be used.
14 Must have at least 1 character and may not have leading whitespace (ws), single quote (‘'’) nor end-of-line character.
15 If optional bit digit assignment used it is a ‘persistent flag’. A flag assigned to another single flag is an ‘aliased flag’. A flag

assigned to a combination of flags using operations is a ‘flag group’. If optional assignment is omitted, an unassigned bit is used.
16 Valid digits range from 0 to 31 (i.e. 32-bits).
17 [flag-group could enclose any flag-operand, but grouping only has an effect around a flag-op, so this helps keep things tidy.]

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 7 -

Parameters:
parameters1 = parameter-list [ws class-desc] [‘!’]
parameter-list = ‘(’ ws [send-params ws] [‘;’ ws return-params ws] ‘)’
send-params = parameter {ws [‘,’ ws] parameter}
return-params = return-param {ws [‘,’ ws] return-param}
parameter = unary-param | group-param
return-param = param-specifier | group-specifier
unary-param2 = param-specifier [ws binding]
param-specifier3 = [class-desc wsr] variable-name [‘!’]
group-param4 = group-specifier [ws binding]
group-specifier5 = ‘{’ ws [class-desc {wsr class-desc} ws] ‘}’ [digits] ws instance-name

Class Descriptors:
class-desc = class-unary | class-union | enum-definition | label
class-unary = class-instance | meta-class | enum-class | flagset-class
class-instance = class | list-class | invoke-class | map-class | code-class
meta-class = ‘<’ class-name ‘>’
class-union6 = ‘<’ class-unary {‘|’ class-unary}1+ ‘>’
invoke-class7 = [‘_’ | ‘+’] parameters
list-class8 = List ‘{’ ws [class-desc ws] ‘}’
map-class9 = Map ‘{’ ws [class-desc] ‘:’ ws [class-desc ws] ‘}’
code-class10 = [class-unary ws] ‘.’ invoke-class

enum-class11 = [class-name [‘@’ invoke-name]] enumeration-name
enum-definition12 = ‘#’ | enumeration-name ‘[’ ws [enumerator-defn {wsr enumerator-defn} ws] ‘]’
enumeration-name = ‘#’ alphabetic {alphanumeric}
enumerator-defn13 = (instance-name [ws ‘:’ ws integer-literal]) | enum-class

label = ‘#’ ‘Symbol’ | ‘String’
flagset-class = [class-name] flagset-name
flagset-name = ‘##’ alphabetic {alphanumeric}

1 Optional class-desc is return class – if type not specified None is inferred or Boolean type for predicates or Auto_ type for

closures or InvokedCoroutine for coroutines. ‘!’ indicates result returned by value (!copy() is called on it) rather than just
being returned by reference.

2 The optional binding indicates the parameter has a default argument (i.e. supplied expression) when argument is omitted. ‘:’
uses instance scope and ‘::’ indicates calling scope used to evaluate the default.

3 If optional class-desc is omitted Boolean is inferred for predicate parameter names or Auto_ for closures, otherwise it is
required and omitting it is an error. If variable-name ends with ‘?’ and class-desc is specified it must be Boolean. Optional ‘!’
indicates arguments passed by value (!copy() is called on them) rather than just being passed by reference.

4 If default binding is omitted an empty list is used as the default.
5 Object inferred if no classes specified. Class of resulting list bound to instance-name is class union of all classes specified. The

optional digits indicates the minimum number of arguments that must be present.
6 Indicates that the class is any one of the classes specified and which in particular is not known at compile time.
7 ‘_’ indicates durational (like coroutine), ‘+’ indicates durational/immediate and lack of either indicates immediate (like

method). Class ‘Closure’ matches any closure interface. Identifiers and defaults used for parameterless closure arguments.
8 List is any List derived class. If class-desc in item class descriptor is omitted, Object is inferred when used as a type or the

item type is deduced when used with a list-literal. A list-class of any item type can be passed to a simple untyped List class.
9 Map is any Map derived class. If class-desc in key/value class descriptors is omitted, Object inferred when used as type or types

are deduced when used with map-literal. A map-class of any key/value type can be passed to simple untyped Map class.
10 Optional class-unary is the receiver type of the method/coroutine – if it is omitted then Object is inferred.
11 Optional class-name and invoke-name qualification only needed if it cannot be inferred from the context – so it may be omitted

and inferred if inside the required scope or if the expected enumeration class type is known, etc.
12 May use just ‘#’ rather than enumeration-name if enum is nested then data member or parameter name is used.
13 Assigning an enumerator to an integer is discouraged though it is often handy to mirror underlying C++. enum-class option

indicates inherit enumerations from specified enum at specified insertion point.

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 8 -

Whitespace:
wsr1 = {whitespace}1+
ws = {whitespace}
whitespace = whitespace-char | comment
whitespace-char = ‘ ’ | formfeed | newline | carriage-return | horiz-tab | vert-tab
end-of-line = newline | carriage-return | end-of-file
comment = single-comment | multi-comment | parser-comment
single-comment = ‘//’ {printable} end-of-line
multi-comment = ‘/*’ {printable} [multi-comment {printable}] ‘*/’
parser-comment2 = ‘\\’ *parser-hint* end-of-line

Characters and Digits:
character = escape-sequence | printable
escape-sequence3 = ‘\’ integer-literal | printable
alphanumeric = alphabetic | digit | ‘_’
alphabetic = uppercase | lowercase
lowercase = ‘a’ | … | ‘z’
uppercase = ‘A’ | … | ‘Z’
digits = ‘0’ | (non-zero-digit {digit})
digit = ‘0’ | non-zero-digit
non-zero-digit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
big-digit = digit | alphabetic

1 wsr is an abbreviation for (w)hite (s)pace (r)equired.
2 [Consider different compiler hints – ex: disable warning X. Should also be a way to hook in application custom compiler hints.]
3 Special escape characters: ‘n’ – newline, ‘t’ – tab, ‘v’ – vertical tab, ‘b’ – backspace, ‘r’ – carriage return, ‘f’ – formfeed, and

‘a’ – alert. All other characters resolve to the same character including ‘\’, ‘”’, and ‘’’. Also see escaped-string.

